Integration Activities in Indonesia:
The Integration of Land and Marine Spatial Data Sets as Part of Indonesian SDI Development

M. Arief Syafii’i

National Coordination Agency for Surveys and Mapping (B A K O S U R T A N A L)
Jl. Raya Jakarta-Bogor, Km. 46, Cibinong-Bogor
INDONESIA
http://www.bakosurtanal.go.id
Email: arief@bakosurtanal.go.id
Overview of Indonesia

- Archipelagic country with 17,502 islands.
- More than 100 thousands km length of coastline.
- Total area is over 5.3 million sq km.
- 63.7% of its area consists of water.
- Population is over 220 millions.
- Consists of 33 provinces and 474 districts.
Why is coastal area important for Indonesia?

- More than 100 thousands km length of coastline.
- About 22% of Indonesian populations live in coastal area.
- 80% of marine activities are concentrated in coastal area.
- Most of marine natural resources are located in coastal area.
- Tsunami high risk area:
 - Flores Island (12 December 1992)
 - Biak Island (17 February 1996)
 - Aceh (26 December 2004)
 - West Java (17 July 2006)
Why needs spatial data integration?

• The increasing activities and complexities in coastal area require an integrated information for sustainable development and good governance of coastal area.

• The number of spatial information (in quantity and variety) to support decision making is growing at rapid rate. The information may include living and non-living resources, bathymetry, sea boundaries, shoreline changes, marine contaminant, seabed characteristics, water quality, property rights, etc.

• The number of organizations that provide spatial data in coastal area is also increasing.

• As the variety of spatial data is increasing, users may require data from more than one sources.
Spatial Data Integration Issues in Indonesia

- No standard at national level has been implemented.

- Each organization (data providers) has its own policies and ways on managing spatial data.

- Technical and non-technical aspects.
Spatial Data Integration Issues

Technical Aspects

- Various spatial reference system
 → (horizontal datum, vertical datum, coord system).

- Various storage format
 → CAD files, GIS files, DBMS
 → Data duplication

- Various scale.

- Differences in spatial data quality
 → due to the differences of resolution or data acquisition method.

- Various data model
 → object definition, geometry, features name, attributes, field type, topology, etc)
Differences between data sources – an example

<table>
<thead>
<tr>
<th>No</th>
<th>Items</th>
<th>Topographic Map (Bakosurtanal)</th>
<th>Nautical Chart (Hydrographic Office)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coastline</td>
<td>Taken from aerial photograph (the boundary line of land and sea at time of exposure)</td>
<td>High tide water level</td>
</tr>
<tr>
<td>2</td>
<td>Horizontal Datum</td>
<td>- Indonesian Datum 1974 (for map published prior to 1996)</td>
<td>- Bessel 1841</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- WGS 84 (for map published from 1996 on)</td>
<td>- WGS 84 (recent publications)</td>
</tr>
<tr>
<td>3</td>
<td>Vertical Datum</td>
<td>- Mean Sea Level (MSL) for land elevations.</td>
<td>- Mean Sea Level (MSL) for land elevations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- no depth information.</td>
<td>- Chart Datum for depth information (e.g. Low tide water level).</td>
</tr>
<tr>
<td>4</td>
<td>Projection system</td>
<td>Universal Transverse Mercator (UTM).</td>
<td>Mercator</td>
</tr>
<tr>
<td>5</td>
<td>Digital Storage Format</td>
<td>Various format (DWG, ARC, SHP)</td>
<td>S57 files</td>
</tr>
<tr>
<td>6</td>
<td>Scale</td>
<td>Sistematically (1 to 10K, 25K, 50K, 100K, 250K).</td>
<td>Not Sistematically (range from large scale to small scale)</td>
</tr>
</tbody>
</table>
Coastal Data Integration Case

- **Case 1: Difference in vertical datum.**

 - MSL is a common reference level for elevation.
 - Chart Datum (usually low water tide level) is a common reference level for depth information as well as a baseline where sea boundaries (*territorial sea, EEZ, continental shelves*) are measured.
 - Chart datum may only be used locally, since it varies at different location.

→ *Integration of land and marine information requires a common reference level for elevation and depth (this case is not applied to nautical chart).*
What is the elevation of point P (refer to MSL or Chart Datum)?
Coastal Data Integration Case

- **Case 2: Difference in coastline definition between data sources.**

 - Topographic map: *Mean Sea Level*
 - Nautical Chart: *High Water Level*
 - Aerial Photo: *Land and sea boundary at time of exposure*
 - Satellite Image: *Land and sea boundary at time of exposure*
 - UNCLOS’82: *High Water Level*

(An island is a naturally formed area of land, surrounded by water which is above water at high tide (Article 10(1) 1958 Convention on the Territorial Sea).
Effect on coastline definition difference

Different object definition will be drawn differently on map.

Results:
Differences in geometry, coastline length, area of island.

Solution:
• Use the same definition of objects.
• Use the same standard.
Spatial Data Integration Issues
Non-Technical Aspects

- Different policies and rules between organizations on managing spatial data.
- Different understanding and knowledge between organizations about NSDI.
- No regulation has been implemented to enforce that all spatial data providers should involve in and contribute to the development of NSDI.
- Most of spatial data providers do not publish enough information (spatial metadata) to enable users finding the spatial data easily.
Efforts on Spatial Data Integration

- Regular meeting between spatial data providers.

- Promoting the implementation of spatial data standard at national level.

- Encourage spatial data providers to involve in Indonesian NSDI development.
Spatial Data Integration Case Study

- The integration of Indonesian topographic map series of scale 1 to 25K, 50K and 250K (published by Bakosurtanal). Each map series is stored in different schema of database.

- The integration of Indonesian coastal map of 1 to 50K scale (published by Bakosurtanal) that contain both land and marine information of the coastal area.

- Integration is implemented within the geospatial database (*Oracle 9i with Spatial Data Option*).
Integrated Spatial Database Architecture

Data Sources

- Topo
- Marine
- Theme

Data Cleaning & Integration

- Admin
- Spatial
- Metadata
- Non-Spatial

Data Warehouse

- Maps
- Disaster Management
- Nat Resources
- S57

Data Mart

Applications & Services

- Autodesk
- MapInfo
- Web Services
- Metadata Explorer
- Other GIS software

Maintenance & Development (ArcGIS, ArcIMS, ArcSDE)
Summary

- Spatial data integration is very important to build an integrated and comprehensive spatial information system that covers the whole area of Indonesia.

- Efforts have been made by the Government of Indonesia by developing a national spatial data infrastructure (NSDI) and the progress is moving forward.

- More spatial data providers at national and regional level are joining the development of Indonesian NSDI to provide users with easy access to spatial data they need.
Thank You

M. Arief Syafi’I

National Coordination Agency for Surveys and Mapping
(B A K O S U R T A N A L)
Jl. Raya Jakarta-Bogor, Km. 46, Cibinong-Bogor
INDONESIA 16911
Ph/Fax. 62-21-87901255
Email: arief@bakosurtanal.go.id
http://www.bakosurtanal.go.id